
ISING MODEL ON THE BETHE LATTICE 

4.1 The Bethe Lattice 

Another simple model that can be exactly solved is the Ising model (or 
indeed any model with only nearest-neighbour interactions) on the Bethe 
lattice. Like the mean-field model, this is equivalent to an approximate 
treatment of a model on, say, a square or cubic lattice (Bethe, 1935). 
However, it can be defined as an exactly solvable model, and this is what 
we shall do here. 

Consider the graph constructed as follows: start from a central point 0 
and add q points all connected to 0. Call the set of these q points the 'first 
shell'. Now create further shells by taking a point in shell r and connecting 
q - 1 new points to it. Do this for all points in shell r and call the set of 
all the new points 'shell r + 1'. 

Proceeding interatively in this way, construct shells 2,3, . . . , n .  This 
gives a graph like that shown in Fig. 4.1. There are q(q - I)''-' points in 
shell r and the total number of points in the graph is 

4[(4 - 1)" - l]/(9 - 2) (4.1.1) 

We call the points in shell n 'boundary points'. They are exceptional in 
that each has only one neighbour, while all other points (interior points) 
each have q neighbours. 

Such a graph contains no circuits and is known as a Cayley tree. From 
our point of view it can be thought of as a regular 'lattice' of coordination 
number q (i.e. q neighbours per site), provided the boundary sites can be 
ignored. 

There is a problem here: normally the ratio of the number of boundary 
sites to the number of interior sites of a lattice becomes small in the 
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thermodynamic limit of a large system. Here it does not, since both numbers 
grow exponentially like (q  - 1)". To overcome this problem we here 
consider only local properties of sites deep within the graph (i.e. infinitely 
far from the boundary in the limit n + 0 3 ) .  Such sites should all be equiv- 
alent, each having coordination number q ,  and can be regarded as forming 
the Bethe lattice. (This distinction between the Cayley tree and the Bethe 
lattice is not always made, but does seem to be useful terminology. I am 
grateful to Professor J. Nagle for suggesting it to me and drawing my 
attention to a relevant article [Chen et al., 19741.) 

Fig. 4.1. A Cayley tree (with q = 3 and n = 4), divided at the central site 0 into 
three sub-trees. They are identical, but here the upper sub-tree is distinguished by 
indicating its sites with solid circles. Each sub-tree is rooted at 0. The site 1 adjacent 

to 0 in the upper sub-tree is shown. The spin at 0 is fi, that at 1 is sl. 

Put another way, if we construct an Ising model on the complete Cayley 
tree, then the partition function Z contains contributions from both sites 
deep within the graph: and sites close to or on the boundary. The contri- 
bution.from the latter is not negligible, even in the thermodynamic limit. 

If one considers the total partition function, then one is considering the 
'Ising model on the Cayley tree'. This problem has been solved (Runnels, 
1967; Eggarter, 1974; Miiller-Hartmann and Zittartz, 1974) and has some 
quite unusual properties. We shall not, however, consider this problem 
here. Instead we shall effectively consider only the contribution to Z from 
sites deep within the graph, i.e. from the Bethe lattice. 

Some motivation for this choice is given by series expansions. If one 
makes a low temperature expansion as in Section 1.8 for any regular lattice, 
then to second order the only properties of the lattice that one needs to 
know are the number of sites and the coordination number. To third order 
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one needs the number of triangles in the lattice, to fourth order the number 
of tetrahedra (i.e. clusters of 4 sites all connected to one another) and 
other highly connected 4-point sub-graphs, and so on. An interesting simple 
case is when there are no circuits at all, and hence no triangles, tetrahedra, 
etc. Then one obtains the Ising model on the Bethe lattice as defined here. 

4.2 Dimensionality 

Consider any regular lattice. Let ml(=q) be the number of neighbours per 
site, m2 the number of next-nearest neighbours, m3 the number of next- 
next-nearest neighbours, etc. Then c, = 1 + ml + m2 + . . . + m, is the 
number of sites within n steps of a given site. For the hyper-cubic lattices 
it is easy to see that 

lim (In c,)/ln n = d , 
n+ m 

where d is the dimensionality of the lattice. 
The relation (4.2.1) is also true for all the regular two and three-dimen: 

sional lattices, and can be regarded as a definition of the dimensionality 
d. 

Now return to considering the Bethe lattice. In this case c, is given by 
(4.1.1). Substituting this expression into (4.2.1) gives d = 03,  so in this 
sense the Bethe lattice is 'infinite-dimensional'. 

4.3 Recurrence Relations for the Central Magnetization 

Consider an Ising model on the complete Cayley tree (but we shall later 
ignore boundary terms, thereby reducing it to the Bethe lattice). The 
partition function is given by (1.8.2), i.e. by 

where 

K C aiq + h Z ai . 
i I (4.3.2) 

( id) 

The first summation in (4.3.2) is over all edges of the graph, the second 
over all sites. The P(a) can be thought of as an unnormalized probability 
distribution: in particular, if a0 is the spin at the central site 0, then the 
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local magnetization there is 

M = (00) = aoP(u)/Z. 
u 

From Fig. 4.1 it is apparent that if the graph is cut at 0, then it splits up 
into q identical disconnected pieces. Each of these is a rooted tree (with 
root 0). This implies that the expression (4.3.2) factors: 

where SO') denotes all the spins (other than aoj  on the jth sub-tree, and 

K C sisj + K S ~ Q  + h C s i ]  , (4.3.5) 
(id 

si being the spin on site i of the sub-tree (other than the root, which has 
spin GO). Site 1 is the site adjacent to 0, as in the upper sub-tree of Fig. 
4.1. The first summation in (4.3.5) is over all edges of the sub-tree other 
than (0,l); the second is over all sites other than 0. The suffix n denotes 
the fact that the sub-tree has n shells, i.e. n steps from the root to the 
boundary sites. 

Further if the upper sub-tree in Fig. 4.1 is cut at the site 1 adjacent to 
0, then it too decomposes into q pieces: one being the 'trunk' (0, I ) ,  the 
rest being identical branches. Each of these branches is a sub-tree like the 
original, but with only n - 1 shells. Thus 

where tO') denotes all the spins (other than sl) on the jth branch of the 
sub-tree. 

These factorization relations (4.3.4) and (4.3.6) make it easy to calculate 
M. Let 

g n ( d  = C Qn(@Is). (4.3.7) 

Then from (4.3.1) and (4.3.4), 

Similarly, from (4.3.3) and (4.3.4), 
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Let 

Xn = gn(- )/gn( + ) . (4.3.10) 

Then from (4.3.8) and (4.3.9), 

Thus M is known if x, is. To obtain x, we sum (4.3.6) over all the spins 
s, i.e. over sl and the fl), to give, using only (4.3.7): 

&(GI) = 2 exp(K00s1 + hsd [gn-l(sdIq-' (4.3.12) 
S1 

Remembering that g and sl are single spins, with values +1 and -1, 
performing the summation in (4.3.12) for a = + 1 or -1, taking ratios and 
using (4.3. lo), we obtain 

Xn = ~ ( x n - l ) ,  (4.3.13) 
where the function y(x) is given by 

y(X) = [e-K+h + eK-hXq-l]fleK+h + e-K-h x q - 1  1 .  (4.3.14) 

Equation (4.3.13) is a recurrence relation between x, and x,-~. It is easy 
to see that 

xo = go(%) = 1 , (4.3.15) 

so (4.3.13) defines x,, and (4.3.11) defines M. 

4.4 The Limit n -, 

Hereafter we consider the ferromagnetic case, K > 0. Then y(x) increases 
monotonically from exp(-2K) to exp(2K) as x goes from 0 to 03. 

The recurrence relation (4.3.13) can be thought of graphically by sim- 
ultaneously plotting y = y(x) and y = x. 

Let P,- 1 be the point (x,-1 ; y(x,- 1)) in the (x, y) plane. To construct 
P, draw a horizontal line through P,- 1 to intercept the line y = x at a point 
Q,. Now draw a vertical line through Q,. Its intercept with y = y(x) is the 
point P,. 

There are two cases to consider: either the line y = x crosses the curve 
y = y(x) once, or it crosses it three times, as shown in Fig. 4.2. In the 
former case the point P, will always monotonically approach the cross-over 
point A as n+ w ,  as indicated in Fig. 4.2(a). Thus x, and M tend to a 
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limit as n becomes large, as we expect. This M is therefore the local 
magnetization of a site deep within the Cayley tree, i.e. the magnetization 
per site of the Bethe lattice. 

If there are three cross-over points, then the outer two (A and C in Fig. 
4.2(b)) are stable limit points of (4.3.13), while the centre one (B) is 
unstable. If Po lies to the left (right) of B, then Pn tends to A (C). Thus 
again Pn tends to a limit, giving the magnetization M for the Bethe lattice. 

Fig. 4.2. Typical sketches of the function y(x) given by (4.3.14), with z = 
exp(-2K). In (a) the curve intercepts the straight line y = x only once, at A. Two 
typical sequences of points P,, = (x,, , y(x,,)) are shown, one starting to the right of 
A, the other {P; , Pi , Pi,.  . .) to the left. All such sequences converge to the limit 
point A. In (b) there are three intersections A, B, C. A sequence {P,) grows in the 
direction of the arrows, never crossing A ,  B or C. Thus A and C are stable limit 

points, B is an unstable fixed point. 

We need some more convenient rule to determine which stable fixed 
point, A or C, is the one approached. The borderline case is when Po is 
the point B, i.e. when x = 1 is a solution of the equation x = y(x). From 
(4.3.14) this occurs when, and only when, h = 0. If h > 0, then Po lies to 
the left of B so Pn tends to A. Conversely, if h > 0, then Pn tends to C.  

Summarizing, when n-+ the magnetization is given, using (4.3.11), 
by 

where x is a solution of 
x = Y(X) 

If there are three solutions, the smallest must be chosen for h > 0, the 
largest for h < 0. 
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These equations can be written in a more conventional form by defining 
2 = e-2K, p = e-2h, p1 = CLXq-l . (4.4.3) 

Then, using (4.3.14), (4.4.2) gives 

x = (2 + p1)/(1 + p g ) .  (4.4.4) 

From (4.4.3), (4.4.4) and (4.4.1) it follows that 

PI/P = [(z + pdl(1 + p1z)Iq-', (4.4.5a) 

M = (1 - pT)I(l+ pi + 2p12). (4.4.5b) 

The first of the equations (4.4.5) defines pi; the second gives the mag- 
netization M. These are the same as the results of the Bethe approximation 
for a lattice of coordination number q (Domb, 1960, pp. 251-254). 

4.5 Magnetization as a Function of H 

Now suppose T, and hence K, is fixed and consider the variation of x and 
M with h = HIkT. Using (4.3.14) the equation (4.4.2) can be written 

e2h - q - 1 - x (e2K - ~ ) l ( e ~ ~ x  - 1) .  (4.5.1) 
All the x, are positive, and so is the limit point x. For the RHS of (4.5.1) 

to be positive it follows that x must lie in the interval 
e-2K < x < e2K. (4.5.2) 

Clearly (4.5.1) defines h as a function of x, for fixed K. (This function 
is of course not the same as the scaling function h,(x) of Section 1.2.) 
Differentiating (4.5.1) logarithmically gives 

dh h - = q - l -  2 sinh 2K 
dx 2cosh2K-x -x-" 

For x in the interval (4.5.2), the RHS of (4.5.3) has its maximum at 
x = 1. If this maximum is negative, i.e. if K < Kc, where 

Kc = 4ln [ql(q - 2)] , (4.5.4) 

then h decreases monotonically from OJ to 0 as x increases from 
exp(-2K) to exp(2K). Hence for given real h, (4.5.1) has one and only 
one real positive solution for x, and x is an analytic function of h for 
-OJ<h<w.  
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If, on the other hand, K > Kc, then dhldx is positive for x sufficiently 
close to one. From (4.5.1), h = 0 when x = 1, so the function h(x) has a 
graph of the type shown in Fig. 4.3. 

For sufficiently small h, (4.5.1) therefore has three solutions for x .  From 
the discussions of Section 4.4, if h > 0 the limit point of the sequence given 
by (4.3.1) corresponds to the smallest solution for x .  If h < 0 it corresponds 
to the largest solution. 

Fig. 4.3. A typical sketch of h as a function of x for T < T,. 

Considering the behaviour as h decreases from + w  through zero to 
- m, it is therefore apparent from Fig. 4.3 that x is an analytic function of 
h, except at h = 0, where it jumps discontinuously from the smallest to the 
largest solution. 

In all cases x is a decreasing function of h, satisfying 

From (4.4.1) it follows that M is an odd function of h. It increases 
monotonically from -1 to 1 as h increases from - w  to and is analytic 
if K < Kc. If K > Kc, then it is analytic apart from a jump discontinuity at 
h = 0. 

This is precisely the typical behaviour of a ferromagnet that was outlined 
in Section 1.1. Thus the Ising model on the Bethe lattice exhibits ferro- 
magnetism, with a critical point at H = 0, T = T,, where 

JIkT, = fln [q/(q - 2)] . (4.5.6) 
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4.6 Free Energy 

The total free energy of the Cayley tree is 

where Z is given by (4.3.1) and (4.3.2). Differentiating these equations 
with respect to H = hkT gives 

where the summation is over all sites i and 

is the local magnetization at site i. Each Mi is a function of H, and hence 
h, for given temperature T. To show this we shall sometimes write it as 
Mi(h). 

If H is large and positive the summation in (4.3.1) is dominated by the 
state with all spins up, so in this limit 

N, being the number of edges and N the number of sites. Also, in this limit 
( a ) = l f o r i =  1, . . . ,  N. 

We can now integrate (4.6.2) with respect to H, using (4.6.3) to obtain 
the integration constant. This gives 

Alternatively, if qi is the number of sites adjacent to site i, then Z qi = 
i 

2Ne, and (4.6.4) can be written 

where 

Each fi can be thought of as the free energy of site i. For an homogeneous 
lattice the fi are all equal to the usual free energy f, and on differentiating 
(4.6.5) one regains the usual relation (1.7.14). 
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As we remarked above, the difficulty with the Cayley tree is that it is 
not homogeneous, there being a significant number of boundary or near- 
boundary sites that have properties different from the interior. However, 
all sites deep inside the graph have the same local magnetization M, and 
hence the same local free energy f, given by (4.6.5). This free energy is 
therefore the free energy of the Ising model on the Bethe lattice. It is given 
bysettingqi = q,  M, = Min (4.6.5), and using the equations (4.5.1), (4.4.1) 
for x and M as functions of h. 

Noting that x is a monotonic differentiable function of h for h > 0, one 
can change the integration variable in (4.6.5) from h' to x' = x(hl). This 
gives [dropping the suffixes i and using z = exp(-2K)] 

provided h > 0 (or K < Kc). 
Substituting the expression (4.5.1) for exp(2h) into (4.4.1), and using 

(4.5.3), the integrand in (4.6.6) can be written, after a little re-arrangement, 
as 

This can be easily integrated to give, eliminating h by using (4.5.1), 

Negating h has the effect of inverting x, which leaves (4.6.8) unchanged. 
Since f must be an even function of h,  it follows that (4.6.8) is true for all 
real h. Together with the equation (4.5.1) for x ,  it gives the free energy 
per site of the Ising model on the Bethe lattice. 

4.7 Low-Temperature Zero-Field Results 

A problem arises with any ferromagnetic Ising model if H = 0 and 
T < Tc. In this case the spins do not know whether to be mostly up, or 
mostly down. If just the boundary spins are fixed to be up, every spin will 
have a greater probability of being up than down. In a sense the 'ther- 
modynamic limit' does not exist, since the bulk properties depend on the 
boundary conditions. 

This is particularly evident in the present model: if H = 0 then it is 
obvious from (4.3.13)-(4.3.15) that x, = 1, for all n. If T < T, this means 
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that all the points P, = (x,, y,) are the point B in Fig. 4.2(b). However, 
this is an unstable fked point of (4.3.13): if xo is not one, but just less than 
one, then the sequence {P,) will converge not to B, but to the stable limit 
point A. 

There are at least two ways round this difficulty: one is to take H = 0 
and fix all boundary spins up; the other to take H > 0, let n -+ m, and then 
let H +  O+.  In either case the sequence {P,) will converge to A and the 
limiting value of x is, from (4.4.2) and (4.3.14), the smallest positive 
solution of the equation 

If T < T,, this value of x is less than one. From (4.4.1) and (4.6.8) the 
spontaneous magnetization M and free energy f are then given by 

It  is interesting to compare these results with those of the two-dimensional 
Ising model. This will be done in Section 11.8. 

4.8 Critical Behaviour 

Set x = exp(- 2s), then (4.5.1) becomes 

h = -(q - 1)s + 4 ln[sinh(K + s)lsinh(K - s)] , (4.8.1) 
which makes it clear that h is an odd function of s. Taylor expanding, we 
obtain 

! 

h = [coth K - q + 11s + coth K cosech2 K s3 + . . . . (4.8.2) 
The critical value of K is given by (4.5.4), i.e. by coth Kc = q - 1. Setting 

as usual 

t = ( T  - Tc)/Tc, (4.8.3) 

and using K = JIkT, it follows that for t small 

coth K - q + 1 = q(q - 2)Kct + 6(t2). (4.8.4) 
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Using this result in (4.8.2), together with h = HIkT, gives (for r and s 
small) : 

From (4.4.1), the magnetization M is given by 
M = tanh(h + qs) . (4.8.6) 

From (4.8.5), h is much less than s, which is itself small, so M -- qs, or 
conversely 

Substituting this result into (4.8.5) and neglecting terms of order r2M, 
t~~ or M, we obtain 

HIkT, = M3hS(tlM2) , (4.8.8) 

where 
hs(x) = f(q - 2)x ln[q/(q - 2)] + (q - 1) (q - 2)/(3q2). (4.8.9) 

Comparing (1.2.1) and (4.8.8), we see that the scaling hypothesis is 
satisfied for this model, hs(x) being the scaling function. It is linear, and 
critical exponents /3 and 6 have the values 

Thus all the exponents P, 6, a, d, y, y' must have the same values as 
those of the mean-field model (Section 3.3), i.e. the 'classical' values. 

All the above results are very similar to those of the mean-field model 
of Chapter 3. (In fact they are the same in the limit q +  w ,  qK finite.) 
However, the Bethe-lattice model is really much more respectable than 
the mean-field one: its interactions are independent of the size of the 
system, and each spin interacts only with its nearest neighbours. 

4.9 Anisotropic Model 

The key equations (4.3.14), (4.4.2), (4.4.1), (4.6.8) of the above working 
can be summarized (using the first two to eliminate z from the last) as 

z = exp(-2K) = (x - ,w?-')/(l - ~ 9 )  , (4.9.1) 

M = (1 - / ~ x ~ ) / ( l  + p q )  , (4.9.2) 
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The edges of the Bethe lattice can be grouped into classes 1 , . . . , q, so 
that each site lies on just one edge of each class. Then the interaction 
coefficient K can be given a different value for different classes of edges. 
If Kr is its value for class r (where r = 1, .  . . , q), then this anisotropic 
model can also be solved by the above methods. 

The equations (4.9.1)-(4.9.3) generalize to 

zr = exp(-2Kr) = (x, - tx;')l(l - t) , r = 1 , . . . , q , (4.9.4a) 

y = exp(-2h) = tl(x1. . . x,) , (4.9.4b) 

These define M, f as functions of Kl, . . . , K,, h; the parameters 
XI, . . . , x,, t being defined by (4.9.4). The critical point occurs when 
h = 0 and xl, . . . , x,, t are infinitesimally different from one. From (4.9.4) 
this implies that 

exp(-2K1) + . . . + exp(-2K,) = q - 2 .  (4.9.7) 

[This result is derived in (11.8.37)-(11.8.42). ] 


